Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(4): e1010993, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068087

RESUMO

Dorsal horn of the spinal cord is an important crossroad of pain neuraxis, especially for the neuronal plasticity mechanisms that can lead to chronic pain states. Windup is a well-known spinal pain facilitation process initially described several decades ago, but its exact mechanism is still not fully understood. Here, we combine both ex vivo and in vivo electrophysiological recordings of rat spinal neurons with computational modeling to demonstrate a role for ASIC1a-containing channels in the windup process. Spinal application of the ASIC1a inhibitory venom peptides mambalgin-1 and psalmotoxin-1 (PcTx1) significantly reduces the ability of deep wide dynamic range (WDR) neurons to develop windup in vivo. All deep WDR-like neurons recorded from spinal slices exhibit an ASIC current with biophysical and pharmacological characteristics consistent with functional expression of ASIC1a homomeric channels. A computational model of WDR neuron supplemented with different ASIC1a channel parameters accurately reproduces the experimental data, further supporting a positive contribution of these channels to windup. It also predicts a calcium-dependent windup decrease for elevated ASIC conductances, a phenomenon that was experimentally validated using the Texas coral snake ASIC-activating toxin (MitTx) and calcium-activated potassium channel inhibitory peptides (apamin and iberiotoxin). This study supports a dual contribution to windup of calcium permeable ASIC1a channels in deep laminae projecting neurons, promoting it upon moderate channel activity, but ultimately leading to calcium-dependent windup inhibition associated to potassium channels when activity increases.


Assuntos
Cálcio , Dor , Animais , Ratos , Cálcio/metabolismo , Simulação por Computador , Neurônios/fisiologia , Peptídeos , Apamina/metabolismo
2.
Front Mol Neurosci ; 15: 880651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774865

RESUMO

Lysophosphatidyl-choline (LPC), a member of the phospholipid family, is an emerging player in pain. It is known to modulate different pain-related ion channels, including Acid-Sensing Ion Channel 3 (ASIC3), a cationic channel mainly expressed in peripheral sensory neurons. LPC potentiates ASIC3 current evoked by mild acidifications, but can also activate the channel at physiological pH. Very recently, LPC has been associated to chronic pain in patients suffering from fibromyalgia or osteoarthritis. Accordingly, repetitive injections of LPC within mouse muscle or joint generate both persistent pain-like and anxiety-like behaviors in an ASIC3-dependent manner. LPC has also been reported to generate acute pain behaviors when injected intraplantarly in rodents. Here, we explore the mechanism of action of a single cutaneous injection of LPC by studying its effects on spinal dorsal horn neurons. We combine pharmacological, molecular and functional approaches including in vitro patch clamp recordings and in vivo recordings of spinal neuronal activity. We show that a single cutaneous injection of LPC exclusively affects the nociceptive pathway, inducing an ASIC3-dependent sensitization of nociceptive fibers that leads to hyperexcitabilities of both high threshold (HT) and wide dynamic range (WDR) spinal neurons. ASIC3 is involved in LPC-induced increase of WDR neuron's windup as well as in WDR and HT neuron's mechanical hypersensitivity, and it participates, together with TRPV1, to HT neuron's thermal hypersensitivity. The nociceptive input induced by a single LPC cutaneous rather induces short-term sensitization, contrary to previously described injections in muscle and joint. If the effects of peripheral LPC on nociceptive pathways appear to mainly depend on peripheral ASIC3 channels, their consequences on pain may also depend on the tissue injected. Our findings contribute to a better understanding of the nociceptive signaling pathway activated by peripheral LPC via ASIC3 channels, which is an important step regarding the ASIC3-dependent roles of this phospholipid in acute and chronic pain conditions.

3.
Pain ; 163(10): 1999-2013, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086123

RESUMO

ABSTRACT: Rheumatic diseases are often associated to debilitating chronic pain, which remains difficult to treat and requires new therapeutic strategies. We had previously identified lysophosphatidylcholine (LPC) in the synovial fluids from few patients and shown its effect as a positive modulator of acid-sensing ion channel 3 (ASIC3) able to induce acute cutaneous pain in rodents. However, the possible involvement of LPC in chronic joint pain remained completely unknown. Here, we show, from 2 independent cohorts of patients with painful rheumatic diseases, that the synovial fluid levels of LPC are significantly elevated, especially the LPC16:0 species, compared with postmortem control subjects. Moreover, LPC16:0 levels correlated with pain outcomes in a cohort of osteoarthritis patients. However, LPC16:0 do not appear to be the hallmark of a particular joint disease because similar levels are found in the synovial fluids of a second cohort of patients with various rheumatic diseases. The mechanism of action was next explored by developing a pathology-derived rodent model. Intra-articular injections of LPC16:0 is a triggering factor of chronic joint pain in both male and female mice, ultimately leading to persistent pain and anxiety-like behaviors. All these effects are dependent on ASIC3 channels, which drive sufficient peripheral inputs to generate spinal sensitization processes. This study brings evidences from mouse and human supporting a role for LPC16:0 via ASIC3 channels in chronic pain arising from joints, with potential implications for pain management in osteoarthritis and possibly across other rheumatic diseases.


Assuntos
Canais Iônicos Sensíveis a Ácido , Dor Crônica , Osteoartrite , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Artralgia/etiologia , Feminino , Humanos , Lisofosfatidilcolinas/toxicidade , Masculino , Camundongos , Osteoartrite/complicações
4.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255764

RESUMO

Therapeutic approaches providing effective medication for Alzheimer's disease (AD) patients after disease onset are urgently needed. Previous studies in AD mouse models suggested that physical exercise or changed lifestyle can delay AD-related synaptic and memory dysfunctions when treatment started in juvenile animals long before onset of disease symptoms, while a pharmacological treatment that can reverse synaptic and memory deficits in AD mice was thus far not identified. Repurposing food and drug administration (FDA)-approved drugs for treatment of AD is a promising way to reduce the time to bring such medication into clinical practice. The sphingosine-1 phosphate analog fingolimod (FTY720) was approved recently for treatment of multiple sclerosis patients. Here, we addressed whether fingolimod rescues AD-related synaptic deficits and memory dysfunction in an amyloid precursor protein/presenilin-1 (APP/PS1) AD mouse model when medication starts after onset of symptoms (at five months). Male mice received intraperitoneal injections of fingolimod for one to two months starting at five to six months. This treatment rescued spine density as well as long-term potentiation in hippocampal cornu ammonis-1 (CA1) pyramidal neurons, that were both impaired in untreated APP/PS1 animals at six to seven months of age. Immunohistochemical analysis with markers of microgliosis (ionized calcium-binding adapter molecule 1; Iba1) and astrogliosis (glial fibrillary acid protein; GFAP) revealed that our fingolimod treatment regime strongly down regulated neuroinflammation in the hippocampus and neocortex of this AD model. These effects were accompanied by a moderate reduction of Aß accumulation in hippocampus and neocortex. Our results suggest that fingolimod, when applied after onset of disease symptoms in an APP/PS1 mouse model, rescues synaptic pathology that is believed to underlie memory deficits in AD mice, and that this beneficial effect is mediated via anti-neuroinflammatory actions of the drug on microglia and astrocytes.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/genética , Inflamação/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Presenilina-1/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Anti-Inflamatórios/farmacologia , Astrócitos/metabolismo , Astrócitos/patologia , Modelos Animais de Doenças , Cloridrato de Fingolimode/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Sinapses/genética , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...